PostgreSQLLa base de données la plus sophistiquée au monde.

Version anglaise

4.2. Expressions de valeurs

Les expressions de valeurs sont utilisées dans une grande variété de contextes, tels que dans la liste cible d'une commande SELECT, dans les nouvelles valeurs de colonnes d'une commande INSERT ou UPDATE, ou dans les conditions de recherche d'un certain nombre de commandes. Le résultat d'une expression de valeurs est quelquefois appelé scalaire, pour le distinguer du résultat d'une expression de table (qui est une table). Les expressions de valeurs sont aussi appelées des expressions scalaires (voire même simplement des expressions). La syntaxe d'expression permet le calcul des valeurs à partir de morceaux primitifs en utilisant les opérations arithmétiques, logiques, d'ensemble et autres.

Une expression de valeur peut être :

  • une constante ou une valeur constante ;

  • une référence de colonne ;

  • une référence de la position d'un paramètre, dans le corps d'une définition de fonction ou d'instruction préparée ;

  • une expression indicée ;

  • une expression de sélection de champs ;

  • un appel d'opérateur ;

  • un appel de fonction ;

  • une expression d'agrégat ;

  • un appel de fonction de fenêtrage ;

  • une conversion de type ;

  • une expression de collationnement ;

  • une sous-requête scalaire ;

  • un constructeur de tableau ;

  • un constructeur de ligne ;

  • toute expression de valeur entre parenthèses, utile pour grouper des sous-expressions et surcharger la précédence.

En plus de cette liste, il existe un certain nombre de constructions pouvant être classées comme une expression mais ne suivant aucune règle de syntaxe générale. Elles ont généralement la sémantique d'une fonction ou d'un opérateur et sont expliquées au Chapitre 9, Fonctions et opérateurs. Un exemple est la clause IS NULL.

Nous avons déjà discuté des constantes dans la Section 4.1.2, « Constantes ». Les sections suivantes discutent des options restantes.

4.2.1. Références de colonnes

Une colonne peut être référencée avec la forme :

correlation.nom_colonne

correlation est le nom d'une table (parfois qualifié par son nom de schéma) ou un alias d'une table définie au moyen de la clause FROM. Le nom de corrélation et le point de séparation peuvent être omis si le nom de colonne est unique dans les tables utilisées par la requête courante (voir aussi le Chapitre 7, Requêtes).

4.2.2. Paramètres de position

Un paramètre de position est utilisé pour indiquer une valeur fournie en externe par une instruction SQL. Les paramètres sont utilisés dans des définitions de fonction SQL et dans les requêtes préparées. Quelques bibliothèques clients supportent aussi la spécification de valeurs de données séparément de la chaîne de commande SQL, auquel cas les paramètres sont utilisés pour référencer les valeurs de données en dehors. Le format d'une référence de paramètre est :

$numéro

Par exemple, considérez la définition d'une fonction : dept :

              CREATE FUNCTION dept(text) RETURNS dept
    AS $$ SELECT * FROM dept WHERE nom = $1 $$
    LANGUAGE SQL;

Dans cet exemple, $1 référence la valeur du premier argument de la fonction à chaque appel de cette commande.

4.2.3. Indices

Si une expression récupère une valeur de type tableau, alors un élément spécifique du tableau peut être extrait en écrivant :

expression[indice]

Des éléments adjacents (un « morceau de tableau ») peuvent être extraits en écrivant :

expression[indice_bas:indice_haut]

Les crochets [ ] doivent apparaître réellement. Chaque indice est lui-même une expression, devant contenir une valeur entière.

En général, l'expression de type tableau doit être entre parenthèses mais ces dernières peuvent être omises lorsque l'expression utilisée comme indice est seulement une référence de colonne ou un paramètre de position. De plus, les indices multiples peuvent être concaténés lorsque le tableau original est multi-dimensionnel. Par exemple :

ma_table.colonnetableau[4]
ma_table.colonnes_deux_d[17][34]
$1[10:42]
(fonctiontableau(a,b))[42]

Dans ce dernier exemple, les parenthèses sont requises. Voir la Section 8.15, « Tableaux » pour plus d'informations sur les tableaux.

4.2.4. Sélection de champs

Si une expression récupère une valeur de type composite (type row), alors un champ spécifique de la ligne est extrait en écrivant :

expression.nom_champ

En général, l'expression de ligne doit être entre parenthèses mais les parenthèses peuvent être omises lorsque l'expression à partir de laquelle se fait la sélection est seulement une référence de table ou un paramètre de position. Par exemple :

ma_table.macolonne
$1.unecolonne
(fonctionligne(a,b)).col3

En fait, une référence de colonne qualifiée est un cas spécial de syntaxe de sélection de champ. Un cas spécial important revient à extraire un champ de la colonne de type composite d'une table :

(colcomposite).unchamp
(matable.colcomposite).unchamp

Les parenthèses sont requises ici pour montrer que colcomposite est un nom de colonne, et non pas un nom de table, ou que matable est un nom de table, pas un nom de schéma dans le deuxième cas.

Vous pouvez demander tous les champs d'une valeur composite en écrivant .* :

(compositecol).*

Cette syntaxe se comporte différemment suivant le contexte. Voir Section 8.16.5, « Utiliser des types composites dans les requêtes » pour plus de détails.

4.2.5. Appels d'opérateurs

Il existe trois syntaxes possibles pour l'appel d'un opérateur :

expression opérateur expression (opérateur binaire préfixe)
opérateur expression (opérateur unaire préfixe)
expression opérateur (opérateur unaire suffixe)

où le jeton opérateur suit les règles de syntaxe de la Section 4.1.3, « Opérateurs », ou est un des mots clés AND, OR et NOT, ou est un nom d'opérateur qualifié de la forme

OPERATOR(schema.nom_operateur)

Quel opérateur particulier existe et est-il unaire ou binaire dépend des opérateurs définis par le système ou l'utilisateur. Le Chapitre 9, Fonctions et opérateurs décrit les opérateurs internes.

4.2.6. Appels de fonctions

La syntaxe pour un appel de fonction est le nom d'une fonction (qualifié ou non du nom du schéma) suivi par sa liste d'arguments entre parenthèses :

nom_fonction([expression [,expression ...]] )

Par exemple, ce qui suit calcule la racine carré de 2 :

sqrt(2)

La liste des fonctions intégrées se trouve dans le Chapitre 9, Fonctions et opérateurs. D'autres fonctions pourraient être ajoutées par l'utilisateur.

En option, les arguments peuvent avoir leur nom attaché. Voir la Section 4.3, « Fonctions appelantes » pour les détails.

[Note]

Note

Une fonction qui prend un seul argument de type composite peut aussi être appelée en utilisant la syntaxe de sélection de champ. Du coup, un champ peut être écrit dans le style fonctionnel. Cela signifie que les notations col(table) et table.col sont interchangeables. Ce comportement ne respecte pas le standard SQL mais il est fourni dans PostgreSQL™ car il permet l'utilisation de fonctions émulant les « champs calculés ». Pour plus d'informations, voir la Section 8.16.5, « Utiliser des types composites dans les requêtes ».

4.2.7. Expressions d'agrégat

Une expression d'agrégat représente l'application d'une fonction d'agrégat à travers les lignes sélectionnées par une requête. Une fonction d'agrégat réduit les nombres entrés en une seule valeur de sortie, comme la somme ou la moyenne des valeurs en entrée. La syntaxe d'une expression d'agrégat est une des suivantes :

nom_agregat (expression [ , ... ] [ clause_order_by ] )
nom_agregat (ALL expression [ , ... ] [ clause_order_by ] )
nom_agregat (DISTINCT expression [ , ... ] [ clause_order_by ] )
nom_agregat ( * )

nom_agregat est un agrégat précédemment défini (parfois qualifié d'un nom de schéma), expression est toute expression de valeur qui ne contient pas lui-même une expression d'agrégat ou un appel à une fonction de fenêtrage. order_by_clause est une clause ORDER BY optionnelle comme décrite ci-dessous.

La première forme d'expression d'agrégat appelle l'agrégat une fois pour chaque ligne en entrée. La seconde forme est identique à la première car ALL est une clause active par défaut. La troisième forme fait appel à l'agrégat une fois pour chaque valeur distincte de l'expression (ou ensemble distinct de valeurs, pour des expressions multiples) trouvée dans les lignes en entrée. La dernière forme appelle l'agrégat une fois pour chaque ligne en entrée ; comme aucune valeur particulière en entrée n'est spécifiée, c'est généralement utile pour la fonction d'agrégat count(*).

La plupart des fonctions d'agrégats ignorent les entrées NULL, pour que les lignes qui renvoient une ou plusieurs expressions NULL soient disqualifiées. Ceci peut être considéré vrai pour tous les agrégats internes sauf indication contraire.

Par exemple, count(*) trouve le nombre total de lignes en entrée alors que count(f1) récupère le nombre de lignes en entrée pour lesquelles f1 n'est pas NULL. En effet, la fonction count ignore les valeurs NULL mais count(distinct f1) retrouve le nombre de valeurs distinctes non NULL de f1.

D'habitude, les lignes en entrée sont passées à la fonction d'agrégat dans un ordre non spécifié. Dans la plupart des cas, cela n'a pas d'importance. Par exemple, min donne le même résultat quelque soit l'ordre dans lequel il reçoit les données. Néanmoins, certaines fonctions d'agrégat (tels que array_agg et string_agg) donnent un résultat dépendant de l'ordre des lignes en entrée. Lors de l'utilisation de ce type d'agrégat, la clause clause_order_by peut être utilisée pour préciser l'ordre de tri désiré. La clause clause_order_by a la même syntaxe que la clause ORDER BY d'une requête, qui est décrite dans la Section 7.5, « Tri des lignes », sauf que ses expressions sont toujours des expressions simples et ne peuvent pas être des noms de colonne en sortie ou des numéros. Par exemple :

              SELECT array_agg(a ORDER BY b DESC) FROM table;

Lors de l'utilisation de fonctions d'agrégat à plusieurs arguments, la clause ORDER BY arrive après tous les arguments de l'agrégat. Par exemple, il faut écrire ceci :

              SELECT string_agg(a, ',' ORDER BY a) FROM table;

et non pas ceci :

              SELECT string_agg(a ORDER BY a, ',') FROM table;  -- incorrect

Ce dernier exemple est syntaxiquement correct mais il concerne un appel à une fonction d'agrégat à un seul argument avec deux clés pour le ORDER BY (le deuxième étant inutile car il est constant).

Si DISTINCT est indiqué en plus de la clause clause_order_by, alors toutes les expressions de l'ORDER BY doivent correspondre aux arguments de l'agrégat ; autrement dit, vous ne pouvez pas trier sur une expression qui n'est pas inclus dans la liste DISTINCT.

[Note]

Note

La possibilité de spécifier à la fois DISTINCT et ORDER BY dans une fonction d'agrégat est une extension de PostgreSQL™.

Les fonctions d'agrégat prédéfinies sont décrites dans la Section 9.20, « Fonctions d'agrégat ». D'autres fonctions d'agrégat pourraient être ajoutées par l'utilisateur.

Une expression d'agrégat peut seulement apparaître dans la liste de résultats ou dans la clause HAVING d'une commande SELECT. Elle est interdite dans d'autres clauses, tels que WHERE, parce que ces clauses sont logiquement évaluées avant que les résultats des agrégats ne soient calculés.

Lorsqu'une expression d'agrégat apparaît dans une sous-requête (voir la Section 4.2.11, « Sous-requêtes scalaires » et la Section 9.22, « Expressions de sous-requêtes »), l'agrégat est normalement évalué sur les lignes de la sous-requête. Cependant, une exception survient si les arguments de l'agrégat contiennent seulement des niveaux externes de variables : ensuite, l'agrégat appartient au niveau externe le plus proche et est évalué sur les lignes de cette requête. L'expression de l'agrégat est une référence externe pour la sous-requête dans laquelle il apparaît et agit comme une constante sur toute évaluation de cette requête. La restriction apparaissant seulement dans la liste de résultat ou dans la clause HAVING s'applique avec respect du niveau de requête auquel appartient l'agrégat.

4.2.8. Appels de fonction de fenêtrage

Un appel de fonction de fenêtrage représente l'application d'une fonction de type agrégat sur une portion des lignes sélectionnées par une requête. Contrairement aux appels de fonction d'agrégat standard, ce n'est pas lié au groupement des lignes sélectionnées en une seule ligne résultat -- chaque ligne reste séparée dans les résultats. Néanmoins, la fonction de fenêtrage est capable de parcourir toutes les lignes qui font partie du groupe de la ligne courante d'après la spécification du groupe (liste PARTITION BY) de l'appel de la fonction de fenêtrage. La syntaxe d'un appel de fonction de fenêtrage est une des suivantes :

nom_fonction ([expression [, expression ... ]]) OVER nom_window
nom_fonction ([expression [, expression ... ]]) OVER ( définition_window )
nom_fonction ( * ) OVER nom_window
nom_fonction ( * ) OVER ( définition_window )

définition_fenêtrage a comme syntaxe :

[ nom_fenêtrage_existante ]
[ PARTITION BY expression [, ...] ]
[ ORDER BY expression [ ASC | DESC | USING opérateur ] [ NULLS { FIRST | LAST } ] [, ...] ]
[ clause_portée ]

et la clause clause_portée optionnelle fait partie de :

{ RANGE | ROWS } début_portée
{ RANGE | ROWS } BETWEEN début_portée AND fin_portée

avec début_portée et fin_portée pouvant faire partie de

UNBOUNDED PRECEDING
valeur PRECEDING
CURRENT ROW
valeur FOLLOWING
UNBOUNDED FOLLOWING

Ici, expression représente toute expression de valeur qui ne contient pas elle-mêle d'appel à des fonctions window. Les listes PARTITION BY et ORDER BY ont essentiellement la même syntaxe et la même sémantique que les clauses GROUP BY et ORDER BY de la requête complète, sauf que leur expressions sont toujours seulement des expressions et ne peuvent pas être des noms ou des numéros de colonnes en sortie. nom_window est une référence à la spécification d'une window nommée, définie dans la clause WINDOW de la requête. Autrement, une définition_window complète peut être donnée dans des parenthèses, en utilisant la même syntaxe que pour la défintion d'une fenêtre nommée dans la clause WINDOW ; voir la page de référence ??? pour les détails. Il est préférable de préciser que OVER nom_fenêtre n'est pas strictement équivalent à OVER (nom_fenêtre) ; ce dernier signifie la copie et la modification de la définition de la fenêtre, et sera rejeté si la spécification de la fenêtre référencée inclut une clause de portée.

La clause clause_frame indique l'ensemble de lignes constituant le frame window, pour les fonctions window qui agissent sur le frame et non pas sur la partition entière. Si fin_frame est omis, sa valeur par défaut est CURRENT ROW. Les restrictions sont les suivantes : début_frame ne peut pas valoir UNBOUNDED FOLLOWING, fin_frame ne peut pas valoir UNBOUNDED PRECEDING et fin_frame ne peut pas apparaître avant début_frame -- par exemple, RANGE BETWEEN CURRENT ROW AND valeur PRECEDING n'est pas autorisé. L'option de frame par défaut est RANGE UNBOUNDED PRECEDING, qui est identique à RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ; cela configure la frame à toutes les lignes à partir du début de la partition jusqu'à la ligne actuelle du prochain dans l'ordre du ORDER BY (ce qui signifie toutes les lignes si la clause ORDER BY est absente). En général, UNBOUNDED PRECEDING signifie que la frame commence avec la première ligne de la partition et, de façon similaire, UNBOUNDED FOLLOWING signifie que la frame se termine avec la dernière ligne de la partition (quel que soit le mode, RANGE ou ROWS. Dans le mode ROWS, CURRENT ROW signifie que la frame commence ou finit avec la ligne actuelle ; mais dans le mode RANGE, cela signifie que la frame commence ou finit avec le premier ou le prochain élément à partir de la ligne actuel dans l'ordre indiqué par la clause ORDER BY. Les cas valeur PRECEDING et valeur FOLLOWING sont actuellement seulement autorisés dans le mode ROWS. Ils indiquent que la frame commence ou finit avec la ligne qui se trouve à ce nombre de lignes avant ou après la ligne actuelle. valeur doit être une expression entière ne contenant aucune variable, fonction d'agrégat ou fonction de fenêtrage. La valeur ne doit pas être NULL ou négative. Par contre, elle peut valoir zéro, ce qui a pour effet de sélectionner la ligne actuelle.

Les fonctions de fenêtrage internes sont décrites dans la Tableau 9.48, « Fonctions Window généralistes ». D'autres fonctions de fenêtrage peuvent être ajoutées par l'utilisateur. De plus, toute fonction d'agrégat interne ou définie par l'utilisateur peut être utilisée comme fonction de fenêtrage.

Les syntaxes utilisant * sont utilisées pour appeler des fonctions d'agrégats sans paramètres en tant que fonctions de fenêtrage. Par exemple : count(*) OVER (PARTITION BY x ORDER BY y). * n'est habituellement pas utilisé pour les fonctions de fenêtrage qui ne sont pas des agrégats. Les fonctions de fenêtrage agrégats, contrairement aux fonctions d'agrégats normales, n'autorisent pas l'utilisation de DISTINCT ou ORDER BY dans la liste des arguments de la fonction.

Les appels de fonctions de fenêtrage sont autorisés seulement dans la liste SELECT et dans la clause ORDER BY de la requête.

Il existe plus d'informations sur les fonctions de fenêtrages dans la Section 3.5, « Fonctions de fenêtrage », dans la Section 9.21, « Fonctions Window » et dans la Section 7.2.4, « Traitement de fonctions Window ».

4.2.9. Conversions de type

Une conversion de type spécifie une conversion à partir d'un type de données vers un autre. PostgreSQL™ accepte deux syntaxes équivalentes pour les conversions de type :

CAST ( expression AS type )
expression::type

La syntaxe CAST est conforme à SQL ; la syntaxe avec :: est historique dans PostgreSQL™.

Lorsqu'une conversion est appliquée à une expression de valeur pour un type connu, il représente une conversion de type à l'exécution. Cette conversion réussira seulement si une opération convenable de conversion de type a été définie. Notez que ceci est subtilement différent de l'utilisation de conversion avec des constantes, comme indiqué dans la Section 4.1.2.7, « Constantes d'autres types ». Une conversion appliquée à une chaîne constante représente l'affectation initiale d'un type pour une valeur constante, et donc cela réussira pour tout type (si le contenu de la chaîne constante est une syntaxe acceptée en entrée pour le type de donnée).

Une conversion de type explicite pourrait être habituellement omise s'il n'y a pas d'ambiguïté sur le type qu'une expression de valeur pourrait produire (par exemple, lorsqu'elle est affectée à une colonne de table) ; le système appliquera automatiquement une conversion de type dans de tels cas. Néanmoins, la conversion automatique est réalisée seulement pour les conversions marquées « OK pour application implicite » dans les catalogues système. D'autres conversions peuvent être appelées avec la syntaxe de conversion explicite. Cette restriction a pour but d'empêcher l'exécution silencieuse de conversions surprenantes.

Il est aussi possible de spécifier une conversion de type en utilisant une syntaxe de type fonction :

nom_type ( expression )

Néanmoins, ceci fonctionne seulement pour les types dont les noms sont aussi valides en tant que noms de fonctions. Par exemple, double precision ne peut pas être utilisé de cette façon mais son équivalent float8 le peut. De même, les noms interval, time et timestamp peuvent seulement être utilisés de cette façon s'ils sont entre des guillemets doubles à cause des conflits de syntaxe. Du coup, l'utilisation de la syntaxe de conversion du style fonction amène à des incohérences et devrait probablement être évitée.

[Note]

Note

La syntaxe par fonction est en fait seulement un appel de fonction. Quand un des deux standards de syntaxe de conversion est utilisé pour faire une conversion à l'exécution, elle appellera en interne une fonction enregistrée pour réaliser la conversion. Par convention, ces fonctions de conversion ont le même nom que leur type de sortie et, du coup, la syntaxe par fonction n'est rien de plus qu'un appel direct à la fonction de conversion sous-jacente. Évidemment, une application portable ne devrait pas s'y fier. Pour plus d'informations, voir la page de manuel de CREATE CAST(7).

4.2.10. Expressions de collationnement

La clause COLLATE surcharge le collationnement d'une expression. Elle est ajoutée à l'expression à laquelle elle s'applique :

expr COLLATE collationnement

collationnement est un identificateur pouvant être qualifié par son schéma. La clause COLLATE a priorité par rapport aux opérateurs ; des parenthèses peuvent être utilisées si nécessaire.

Si aucun collationnement n'est spécifiquement indiqué, le système de bases de données déduit cette information du collationnement des colonnes impliquées dans l'expression. Si aucune colonne ne se trouve dans l'expression, il utilise le collationnement par défaut de la base de données.

Les deux utilisations principales de la clause COLLATE sont la surcharge de l'ordre de tri dans une clause ORDER BY, par exemple :

              SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";

et la surcharge du collationnement d'une fonction ou d'un opérateur qui produit un résultat sensible à la locale, par exemple :

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C";

Notez que, dans le dernier cas, la clause COLLATE est attachée à l'argument en entrée de l'opérateur. Peu importe l'argument de l'opérateur ou de la fonction qui a la clause COLLATE parce que le collationnement appliqué à l'opérateur ou à la fonction est dérivé en considérant tous les arguments, et une clause COLLATE explicite surchargera les collationnements des autres arguments. (Attacher des clauses COLLATE différentes sur les arguments aboutit à une erreur. Pour plus de détails, voir la Section 22.2, « Support des collations ».) Du coup, ceci donne le même résultat que l'exemple précédent :

              SELECT * FROM tbl WHERE a COLLATE "C" > 'foo';

Mais ceci n'est pas valide :

              SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C";

car cette requête cherche à appliquer un collationnement au résultat de l'opérateur >, qui est du type boolean, type non sujet au collationnement.

4.2.11. Sous-requêtes scalaires

Une sous-requête scalaire est une requête SELECT ordinaire entre parenthèses renvoyant exactement une ligne avec une colonne (voir le Chapitre 7, Requêtes pour plus d'informations sur l'écriture des requêtes). La requête SELECT est exécutée et la seule valeur renvoyée est utilisée dans l'expression de valeur englobante. C'est une erreur d'utiliser une requête qui renvoie plus d'une ligne ou plus d'une colonne comme requête scalaire. Mais si, lors d'une exécution particulière, la sous-requête ne renvoie pas de lignes, alors il n'y a pas d'erreur ; le résultat scalaire est supposé NULL. La sous-requête peut référencer des variables de la requête englobante, qui agiront comme des constantes durant toute évaluation de la sous-requête. Voir aussi la Section 9.22, « Expressions de sous-requêtes » pour d'autres expressions impliquant des sous-requêtes.

Par exemple, ce qui suit trouve la ville disposant de la population la plus importante dans chaque état :

              SELECT nom, (SELECT max(pop) FROM villes WHERE villes.etat = etat.nom)
    FROM etats;

4.2.12. Constructeurs de tableaux

Un constructeur de tableau est une expression qui construit une valeur de tableau à partir de la valeur de ses membres. Un constructeur de tableau simple utilise le mot clé ARRAY, un crochet ouvrant [, une liste d'expressions (séparées par des virgules) pour les valeurs des éléments du tableau et finalement un crochet fermant ]. Par exemple :

SELECT ARRAY[1,2,3+4];
  array
---------
 {1,2,7}
(1 row)

Par défaut, le type d'élément du tableau est le type commun des expressions des membres, déterminé en utilisant les mêmes règles que pour les constructions UNION ou CASE (voir la Section 10.5, « Constructions UNION, CASE et constructions relatives »). Vous pouvez surcharger ceci en convertissant explicitement le constructeur de tableau vers le type désiré. Par exemple :

SELECT ARRAY[1,2,22.7]::integer[];
  array
----------
 {1,2,23}
(1 row)

Ceci a le même effet que la conversion de chaque expression vers le type d'élément du tableau individuellement. Pour plus d'informations sur les conversions, voir la Section 4.2.9, « Conversions de type ».

Les valeurs de tableaux multidimensionnels peuvent être construits par des constructeurs de tableaux imbriqués. Pour les constructeurs internes, le mot-clé ARRAY peut être omis. Par exemple, ces expressions produisent le même résultat :

              SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
     array
---------------
 {{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],[3,4]];
     array
---------------
 {{1,2},{3,4}}
(1 row)

Comme les tableaux multidimensionnels doivent être rectangulaires, les constructeurs internes du même niveau doivent produire des sous-tableaux de dimensions identiques. Toute conversion appliquée au constructeur ARRAY externe se propage automatiquement à tous les constructeurs internes.

Les éléments d'un constructeur de tableau multidimensionnel peuvent être tout ce qui récupère un tableau du bon type, pas seulement une construction d'un tableau imbriqué. Par exemple :

              CREATE TABLE tab(f1 int[], f2 int[]);

INSERT INTO tab VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM tab;
                     array
------------------------------------------------
 {{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

Vous pouvez construire un tableau vide mais, comme il est impossible d'avoir un tableau sans type, vous devez convertir explicitement votre tableau vide dans le type désiré. Par exemple :

SELECT ARRAY[]::integer[];
 array
-------
 {}
(1 row)

Il est aussi possible de construire un tableau à partir des résultats d'une sous-requête. Avec cette forme, le constructeur de tableau est écrit avec le mot clé ARRAY suivi par une sous-requête entre parenthèses (et non pas des crochets). Par exemple :

              SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
                                 array
-----------------------------------------------------------------------
 {2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412,2413}
(1 row)

La sous-requête doit renvoyer une seule colonne. Le tableau à une dimension résultant aura un élément pour chaque ligne dans le résultat de la sous-requête, avec un type élément correspondant à celui de la colonne en sortie de la sous-requête.

Les indices d'un tableau construit avec ARRAY commencent toujours à un. Pour plus d'informations sur les tableaux, voir la Section 8.15, « Tableaux ».

4.2.13. Constructeurs de lignes

Un constructeur de ligne est une expression qui construit une valeur de ligne (aussi appelée une valeur composite) à partir des valeurs de ses membres. Un constructeur de ligne consiste en un mot clé ROW, une parenthèse gauche, zéro ou une ou plus d'une expression (séparées par des virgules) pour les valeurs des champs de la ligne, et enfin une parenthèse droite. Par exemple :

              SELECT ROW(1,2.5,'ceci est un test');

Le mot clé ROW est optionnel lorsqu'il y a plus d'une expression dans la liste.

Un constructeur de ligne peut inclure la syntaxe valeurligne.*, qui sera étendue en une liste d'éléments de la valeur ligne, ce qui est le comportement habituel de la syntaxe .* utilisée au niveau haut d'une liste SELECT (voir Section 8.16.5, « Utiliser des types composites dans les requêtes »). Par exemple, si la table t a les colonnes f1 et f2, ces deux requêtes sont identiques :

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;
[Note]

Note

Avant PostgreSQL™ 8.2, la syntaxe .* n'était pas étendue dans les constructeurs de lignes. De ce fait, ROW(t.*, 42) créait une ligne à deux champs dont le premier était une autre valeur de ligne. Le nouveau comportement est généralement plus utile. Si vous avez besoin de l'ancien comportement de valeurs de ligne imbriquées, écrivez la valeur de ligne interne sans .*, par exemple ROW(t, 42).

Par défaut, la valeur créée par une expression ROW est d'un type d'enregistrement anonyme. Si nécessaire, il peut être converti en un type composite nommé -- soit le type de ligne d'une table soit un type composite créé avec CREATE TYPE AS. Une conversion explicite pourrait être nécessaire pour éviter toute ambiguïté. Par exemple :

              CREATE TABLE ma_table(f1 int, f2 float, f3 text);

CREATE FUNCTION recup_f1(ma_table) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- Aucune conversion nécessaire parce que seul un recup_f1() existe
SELECT recup_f1(ROW(1,2.5,'ceci est un test'));
 recup_f1
----------
1
(1 row)

CREATE TYPE mon_typeligne AS (f1 int, f2 text, f3 numeric);

CREATE FUNCTION recup_f1(mon_typeligne) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- Maintenant, nous avons besoin d'une conversion
-- pour indiquer la fonction à appeler
SELECT recup_f1(ROW(1,2.5,'ceci est un test'));
ERROR:  function recup_f1(record) is not unique

SELECT recup_f1(ROW(1,2.5,'ceci est un test')::ma_table);
 getf1
-------
 1
(1 row)

SELECT recup_f1(CAST(ROW(11,'ceci est un test',2.5) AS mon_typeligne));
 getf1
-------
 11
(1 row)

Les constructeurs de lignes peuvent être utilisés pour construire des valeurs composites à stocker dans une colonne de table de type composite ou pour être passé à une fonction qui accepte un paramètre composite. De plus, il est possible de comparer deux valeurs de lignes ou pour tester une ligne avec IS NULL ou IS NOT NULL, par exemple

              SELECT ROW(1,2.5,'ceci est un test') = ROW(1, 3, 'pas le même');

SELECT ROW(table.*) IS NULL FROM table; -- détecte toutes les lignes non NULL

Pour plus de détails, voir la Section 9.23, « Comparaisons de lignes et de tableaux ». Les constructeurs de lignes peuvent aussi être utilisés en relation avec des sous-requêtes, comme discuté dans la Section 9.22, « Expressions de sous-requêtes ».

4.2.14. Règles d'évaluation des expressions

L'ordre d'évaluation des sous-expressions n'est pas défini. En particulier, les entrées d'un opérateur ou d'une fonction ne sont pas obligatoirement évaluées de la gauche vers la droite ou dans un autre ordre fixé.

De plus, si le résultat d'une expression peut être déterminé par l'évaluation de certaines parties de celle-ci, alors d'autres sous-expressions devraient ne pas être évaluées du tout. Par exemple, si vous écrivez :

              SELECT true OR une_fonction();

alors une_fonction() pourrait (probablement) ne pas être appelée du tout. Pareil dans le cas suivant :

              SELECT une_fonction() OR true;

Notez que ceci n'est pas identique au « court-circuitage » de gauche à droite des opérateurs booléens utilisé par certains langages de programmation.

En conséquence, il est déconseillé d'utiliser des fonctions ayant des effets de bord dans une partie des expressions complexes. Il est particulièrement dangereux de se fier aux effets de bord ou à l'ordre d'évaluation dans les clauses WHERE et HAVING car ces clauses sont reproduites de nombreuses fois lors du développement du plan d'exécution. Les expressions booléennes (combinaisons AND/OR/NOT) dans ces clauses pourraient être réorganisées d'une autre façon autorisée dans l'algèbre booléenne.

Quand il est essentiel de forcer l'ordre d'évaluation, une construction CASE (voir la Section 9.17, « Expressions conditionnelles ») peut être utilisée. Voici un exemple qui ne garantie pas qu'une division par zéro ne soit faite dans une clause WHERE :

              SELECT ... WHERE x > 0 AND y/x > 1.5;

Mais ceci est sûr :

              SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

Une construction CASE utilisée de cette façon déjouera les tentatives d'optimisation, donc cela ne sera à faire que si c'est nécessaire (dans cet exemple particulier, il serait sans doute mieux de contourner le problème en écrivant y > 1.5*x).

Néanmoins, CASE n'est pas un remède à tout. Une limitation à la technique illustrée ci-dessus est qu'elle n'empêche pas l'évaluation en avance des sous-expressions constantes. Comme décrit dans Section 35.6, « Catégories de volatilité des fonctions », les fonctions et les opérateurs marqués IMMUTABLE peuvent être évalués quand la requête est planifiée plutôt que quand elle est exécutée. Donc, par exemple :

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

va produire comme résultat un échec pour division par zéro car le planificateur a essayé de simplifier la sous-expression constante, même si chaque ligne de la table a x > 0 de façon à ce que la condition ELSE ne soit jamais exécutée.

Bien que cet exemple particulier puisse sembler stupide, il existe de nombreux cas moins évident, n'impliquant pas de constantes, mais plutôt des requêtes exécutées par des fonctions, quand les valeurs des arguments des fonctions et de variables locales peuvent être insérées dans les requêtes en tant que constantes toujours dans le but de la planification. À l'intéreur de fonctions PL/pgSQL, par exemple, en utilisant une instruction IF-THEN- ELSE pour proteger un calcul risqué est beaucoup plus sûr que dans une expression CASE.

Une limitation de même type est qu'un CASE ne peut pas empêcher l'évaluation d'une expression d'agrégat qui y est contenue car les expressions d'agrégat sont calculées avant que les autres expressions dans une liste SELECT et dans une clause HAVING ne soient considérées. Par exemple, la requête suivante peut causer une erreur de division par zéro bien qu'elle semble protéger contre ce problème :

SELECT CASE WHEN min(employees) > 0
            THEN avg(expenses / employees)
       END
    FROM departments;

Les agrégats min() et avg() sont calculés en même temps sur toutes les lignes en entrée, donc si une ligne a sa colonne employees à zéro, l'erreur de division par zéro surviendra avant le test du résultat de min(). Utilisez à la place une clause WHERE pour empêcher les lignes problématiques en entrée d'atteindre la fonction d'agrégat.