PostgreSQLLa base de données la plus sophistiquée au monde.

Version anglaise

55.2. Extensibilité

L'implantation d'une nouvelle méthode d'accès à un index a toujours été un travail complexe. Il est, en effet, nécessaire de comprendre le fonctionnement interne de la base de données, tel que le gestionnaire de verrous ou le WAL.

L'interface GiST dispose d'un haut niveau d'abstraction, ce qui autorise le codeur de la méthode d'accès à ne coder que la sémantique du type de données accédé. La couche GiST se charge elle-même de la gestion des accès concurrents, des traces et de la recherche dans la structure en arbre.

Cette extensibilité n'est pas comparable à celle des autres arbres de recherche standard en termes de données gérées. Par exemple, PostgreSQL™ supporte les B-trees et les index de hachage extensibles. Cela signifie qu'il est possible d'utiliser PostgreSQL™ pour construire un B-tree ou un hachage sur tout type de données. Mais, les B-trees ne supportent que les prédicats d'échelle (<, =, >), les index de hachage que les requêtes d'égalité.

Donc, lors de l'indexation d'une collection d'images, par exemple, avec un B-tree PostgreSQL™, seules peuvent être lancées des requêtes de type « est-ce que imagex est égale à imagey », « est-ce que imagex est plus petite que imagey » et « est-ce que imagex est plus grande que imagey ». En fonction de la définition donnée à « égale à », « inférieure à » ou « supérieure à », cela peut avoir une utilité. Néanmoins, l'utilisation d'un index basé sur GiST permet de créer de nombreuses possibilités de poser des questions spécifiques au domaine, telles que « trouver toutes les images de chevaux » ou « trouver toutes les images sur-exposées ».

Pour obtenir une méthode d'accès GiST fonctionnelle, il suffit de coder plusieurs méthodes utilisateur définissant le comportement des clés dans l'arbre. Ces méthodes doivent être suffisamment élaborées pour supporter des requêtes avancées, mais pour toutes les requêtes standard (B-trees, R-trees, etc.) elles sont relativement simples. En bref, GiST combine extensibilité, généralité, ré-utilisation de code et interface claire.

Une classe d'opérateur d'index GiST doit fournir sept méthodes, et une huitième optionnelle. La précision de l'index est assurée par l'implantation des méthodes same, consistent et union alors que l'efficacité (taille et rapidité) de l'index dépendra des méthodes penalty et picksplit. Les deux fonctions restantes sont compress et decompress, qui permettent à un index d'avoir des données internes de l'arbre d'un type différent de ceux des données qu'il indexe. Les feuilles doivent être du type des données indexées alors que les autres nœuds peuvent être de n'importe quelle structure C (mais vous devez toujours suivre les règles des types de données de PostgreSQL™ dans ce cas, voir ce qui concerne varlena pour les données de taille variable). Si le type de données interne de l'arbre existe au niveau SQL, l'option STORAGE de la commande CREATE OPERATOR CLASS peut être utilisée. La huitième méthode, optionnelle, est distance, qui est nécessaire si la classe d'opérateur souhaite supporter les parcours ordonnées (intéressant dans le cadre des recherches du voisin-le-plus-proche, nearest-neighbor).

consistent

Étant donné une entrée d'index p et une valeur de requête q, cette fonction détermine si l'entrée de l'index est cohérente (« consistent » en anglais) avec la requête ; c'est-à-dire, est-ce que le prédicat « colonne_indexée opérateur_indexable q » soit vrai pour toute ligne représentée par l'entrée de l'index ? Pour une entrée de l'index de type feuille, c'est l'équivalent pour tester la condition indexable, alors que pour un nœud interne de l'arbre, ceci détermine s'il est nécessaire de parcourir le sous-arbre de l'index représenté par le nœud. Quand le résultat est true, un drapeau recheck doit aussi être renvoyé. Ceci indique si le prédicat est vrai à coup sûr ou seulement peut-être vrai. Si recheck = false, alors l'index a testé exactement la condition du prédicat, alors que si recheck = true, la ligne est seulement un correspondance de candidat. Dans ce cas, le système évaluera automatiquement l'opérateur_indexable avec la valeur actuelle de la ligne pour voir s'il s'agit réellement d'une correspondance. Cette convention permet à GiST de supporter à la fois les structures sans pertes et celles avec perte de l'index.

La déclaration SQL de la fonction doit ressembler à ceci :

CREATE OR REPLACE FUNCTION my_consistent(internal, data_type, smallint, oid, internal)
RETURNS bool
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

Et le code correspondant dans le module C peut alors suivre ce squelette :

Datum       my_consistent(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_consistent);

Datum
my_consistent(PG_FUNCTION_ARGS)
{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    data_type  *query = PG_GETARG_DATA_TYPE_P(1);
    StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
    /* Oid subtype = PG_GETARG_OID(3); */
    bool       *recheck = (bool *) PG_GETARG_POINTER(4);
    data_type  *key = DatumGetDataType(entry->key);
    bool        retval;

    /*
     * determine return value as a function of strategy, key and query.
     *
     * Use GIST_LEAF(entry) to know where you're called in the index tree,
     * which comes handy when supporting the = operator for example (you could
     * check for non empty union() in non-leaf nodes and equality in leaf
     * nodes).
     */

    *recheck = true;        /* or false if check is exact */

    PG_RETURN_BOOL(retval);
}

Ici, key est un élément dans l'index et query la valeur la recherchée dans l'index. Le paramètre StrategyNumber indique l'opérateur appliqué de votre classe d'opérateur. Il correspond à un des nombres d'opérateurs dans la commande CREATE OPERATOR CLASS. Suivant les opérateurs que vous avez inclus dans la classe, le type de données de query pourrait varier avec l'opérateur, mais le squelette ci-dessus suppose que ce n'est pas le cas.

union

Cette méthode consolide l'information dans l'arbre. Suivant un ensemble d'entrées, cette fonction génère une nouvelle entrée d'index qui représente toutes les entrées données.

La déclaration SQL de la fonction doit ressembler à ceci :

CREATE OR REPLACE FUNCTION my_union(internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

Et le code correspondant dans le module C peut alors suivre ce squelette :

Datum       my_union(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_union);

Datum
my_union(PG_FUNCTION_ARGS)
{
    GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
    GISTENTRY  *ent = entryvec->vector;
    data_type  *out,
               *tmp,
               *old;
    int         numranges,
                i = 0;

    numranges = entryvec->n;
    tmp = DatumGetDataType(ent[0].key);
    out = tmp;

    if (numranges == 1)
    {
        out = data_type_deep_copy(tmp);

        PG_RETURN_DATA_TYPE_P(out);
    }

    for (i = 1; i < numranges; i++)
    {
        old = out;
        tmp = DatumGetDataType(ent[i].key);
        out = my_union_implementation(out, tmp);
    }

    PG_RETURN_DATA_TYPE_P(out);
}

Comme vous pouvez le voir dans ce quelette, nous gérons un type de données où union(X, Y, Z) = union(union(X, Y), Z). C'est assez simple pour supporter les types de données où ce n'est pas le cas, en implantant un autre algorithme d'union dans cette méthode de support GiST.

La fonction d'implantation de union doit renvoyer un pointeur vers la mémoire qui vient d'être allouée via la fonction palloc(). Vous ne pouvez pas tout simplement renvoyer l'entrée.

compress

Convertit l'élément de données dans un format compatible avec le stockage physique dans une page d'index.

La déclaration SQL de la fonction doit ressembler à ceci :

CREATE OR REPLACE FUNCTION my_compress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

Et le code correspondant dans le module C peut alors suivre ce squelette :

Datum       my_compress(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    GISTENTRY  *retval;

    if (entry->leafkey)
    {
        /* replace entry->key with a compressed version */
        compressed_data_type *compressed_data = palloc(sizeof(compressed_data_type));

        /* fill *compressed_data from entry->key ... */

        retval = palloc(sizeof(GISTENTRY));
        gistentryinit(*retval, PointerGetDatum(compressed_data),
                      entry->rel, entry->page, entry->offset, FALSE);
    }
    else
    {
        /* typically we needn't do anything with non-leaf entries */
        retval = entry;
    }

    PG_RETURN_POINTER(retval);
}

Vous devez adapter compressed_data_type au type spécifique que vous essayez d'obtenir pour compresser les nœuds finaux.

Vous pourriez aussi avoir besoin de faire attention à la compression des valeurs NULL, en enregistrant par exemple (Datum) 0 comme le fait gist_circle_compress.

decompress

L'inverse de la fonction compress. Convertit la représentation de l'élément de donnée en un format manipulable par la base de données.

La déclaration SQL de la fonction doit ressembler à ceci :

CREATE OR REPLACE FUNCTION my_decompress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

Et le code correspondant dans le module C peut alors suivre ce squelette :

Datum       my_decompress(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_decompress);

Datum
my_decompress(PG_FUNCTION_ARGS)
{
    PG_RETURN_POINTER(PG_GETARG_POINTER(0));
}

Le squelette ci-dessus est convenable dans le cas iù aucune décompression n'est nécessaire.

penalty

Renvoie une valeur indiquant le « coût » d'insertion d'une nouvelle entrée dans une branche particulière de l'arbre. Les éléments seront insérés dans l'ordre des pénalités moindres (penalty) de l'arbre. Les valeurs renvoyées par penalty doivent être positives ou nulles. Si une valeur négative est renvoyée, elle sera traitée comme valant zéro.

La déclaration SQL de la fonction doit ressembler à ceci :

CREATE OR REPLACE FUNCTION my_penalty(internal, internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;  -- in some cases penalty functions need not be strict

Et le code correspondant dans le module C peut alors suivre ce squelette :

Datum       my_penalty(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_penalty);

Datum
my_penalty(PG_FUNCTION_ARGS)
{
    GISTENTRY  *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
    GISTENTRY  *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
    float      *penalty = (float *) PG_GETARG_POINTER(2);
    data_type  *orig = DatumGetDataType(origentry->key);
    data_type  *new = DatumGetDataType(newentry->key);

    *penalty = my_penalty_implementation(orig, new);
    PG_RETURN_POINTER(penalty);
}

La fonction penalty est crucial pour de bonnes performances de l'index. Elle sera utilisée lors de l'insertion pour déterminer la branche à suivre pour savoir où ajoter la nouvelle entrée dans l'arbre. Lors de l'exécution de la requête, plus l'arbre sera bien balancé, plus l'exécution sera rapide.

picksplit

Quand une division de page est nécessaire pour un index, cette fonction décide des entrées de la page qui resteront sur l'ancienne page et de celles qui seront déplacées sur la nouvelle page.

La déclaration SQL de la fonction doit ressembler à ceci :

CREATE OR REPLACE FUNCTION my_picksplit(internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

Et le code correspondant dans le module C peut alors suivre ce squelette :

Datum       my_picksplit(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_picksplit);

Datum
my_picksplit(PG_FUNCTION_ARGS)
{
    GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
    OffsetNumber maxoff = entryvec->n - 1;
    GISTENTRY  *ent = entryvec->vector;
    GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
    int         i,
                nbytes;
    OffsetNumber *left,
               *right;
    data_type  *tmp_union;
    data_type  *unionL;
    data_type  *unionR;
    GISTENTRY **raw_entryvec;

    maxoff = entryvec->n - 1;
    nbytes = (maxoff + 1) * sizeof(OffsetNumber);

    v->spl_left = (OffsetNumber *) palloc(nbytes);
    left = v->spl_left;
    v->spl_nleft = 0;

    v->spl_right = (OffsetNumber *) palloc(nbytes);
    right = v->spl_right;
    v->spl_nright = 0;

    unionL = NULL;
    unionR = NULL;

    /* Initialize the raw entry vector. */
    raw_entryvec = (GISTENTRY **) malloc(entryvec->n * sizeof(void *));
    for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
        raw_entryvec[i] = &(entryvec->vector[i]);

    for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
    {
        int         real_index = raw_entryvec[i] - entryvec->vector;

        tmp_union = DatumGetDataType(entryvec->vector[real_index].key);
        Assert(tmp_union != NULL);

        /*
         * Choose where to put the index entries and update unionL and unionR
         * accordingly. Append the entries to either v_spl_left or
         * v_spl_right, and care about the counters.
         */

        if (my_choice_is_left(unionL, curl, unionR, curr))
        {
            if (unionL == NULL)
                unionL = tmp_union;
            else
                unionL = my_union_implementation(unionL, tmp_union);

            *left = real_index;
            ++left;
            ++(v->spl_nleft);
        }
        else
        {
            /*
             * Same on the right
             */
        }
    }

    v->spl_ldatum = DataTypeGetDatum(unionL);
    v->spl_rdatum = DataTypeGetDatum(unionR);
    PG_RETURN_POINTER(v);
}

Comme penalty, la fonction picksplit est cruciale pour de bonnes performances de l'index. Concevoir des implantations convenables des fonctions penalty et picksplit est le challenge d'un index GiST performant.

same

Renvoit true si les deux entrées de l'index sont identiques, faux sinon.

La déclaration SQL de la fonction ressemble à ceci :

CREATE OR REPLACE FUNCTION my_same(internal, internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

Et le code correspondant dans le module C peut alors suivre ce squelette :

Datum       my_same(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_same);

Datum
my_same(PG_FUNCTION_ARGS)
{
    prefix_range *v1 = PG_GETARG_PREFIX_RANGE_P(0);
    prefix_range *v2 = PG_GETARG_PREFIX_RANGE_P(1);
    bool       *result = (bool *) PG_GETARG_POINTER(2);

    *result = my_eq(v1, v2);
    PG_RETURN_POINTER(result);
}

Pour des raisons historiques, la fonction same ne renvoie pas seulement un résultat booléen ; à la place, il doit enregistrer le drapeau à l'emplacement indiqué par le troisième argument.

distance

À partir d'une entrée d'index p et une valeur recherchée q, cette fonction détermine la « distance » entre l'entrée de l'index et la valeur recherchée. Cette fonction doit être fournie si la classe d'opérateur contient des opérateurs de tri. Une requête utilisant l'opérateur de tri sera implémentée en renvoyant les entrées d'index dont les valeurs de « distance » sont les plus petites, donc les résultats doivent être cohérents avec la sémantique de l'opérateur. Pour une entrée d'index de type feuille, le résultat représente seulement la distance vers l'entrée d'index. Pour un nœud de l'arbre interne, le résultat doit être la plus petite distance que toute entrée enfant représente.

La déclaration SQL de la fonction doit ressembler à ceci :

CREATE OR REPLACE FUNCTION my_distance(internal, data_type, smallint, oid)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

Et le code correspondant dans le module C peut correspondre à ce squelette :

Datum       my_distance(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_distance);

Datum
my_distance(PG_FUNCTION_ARGS)
{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    data_type  *query = PG_GETARG_DATA_TYPE_P(1);
    StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
    /* Oid subtype = PG_GETARG_OID(3); */
    data_type  *key = DatumGetDataType(entry->key);
    double      retval;

    /*
     * determine return value as a function of strategy, key and query.
     */

    PG_RETURN_FLOAT8(retval);
}

Les arguments de la fonction distance sont identiques aux arguments de la fonction consistent, sauf qu'il n'y a pas de drapeau « recheck ». La distance vers une entrée d'index de type feuille doit toujours être déterminée exactement car il n'existe pas de moyen pour ré-ordonner les lignes une fois qu'elles ont été renvoyées. Une approximation est autorisée lors de la détermination de la distance vers un nœud de l'arbre interne, à partir du moment où le résultat n'est jamais plus grand que la distance réelle vers les enfants. Du coup, la distance vers une boîte englobante est habituellement suffisante dans les applications de géométrie. La valeur du résultat peut être une valeur float8 finie. (l'infinité et sa valeur négative sont utilisée en interne pour gérer des cas comme les valeurs NULL, donc il n'est pas recommand que les fonctions distance renvoient ces valeurs.)

Toutes les méthodes de support GiST sont habituellement appelées dans des contextes mémoires à durée limitée. En fait, CurrentMemoryContext sera réinitialisé après le traitement de chaque ligne. Il n'est donc pas très important de s'inquiéter de libérer avec pfree tout ce que vous avez alloué avec palloc. Néanmoins, dans certains cas, une méthode de support peut avoir besoin de cacher des données à utiliser lors des prochains appels. Pour cela, allouez les données à durée de vie longue dans fcinfo->flinfo->fn_mcxt et conservez un pointeur vers ces données dans fcinfo->flinfo->fn_extra. Ce type de données va survivre pendant toute la durée de l'opération sur l'index (par exemple, un seul parcours d'index GiST, une construction d'index ou l'insertion d'une ligne dans un index). Faites attention à libérer avec pfree la valeur précédente lors du remplacement d'une valeur fn_extra. Dans le cas contraire, une perte mémoire s'accumulera pendant la durée de l'opération.